Improving MSVM-RFE for Multiclass Gene Selection∗

نویسندگان

  • Yan-Mei Zhao
  • Zhi-Xia Yang
چکیده

Along with the advent of DNA microarray technology, gene expression profiling has been widely used to study molecular signatures of many diseases and to develop molecular diagnostics for disease prediction. In class prediction problems using expression data, gene selection is essential to improve the prediction accuracy and to identify informative genes for a disease. In this paper we improve the multi-class support vector machine-recursive feature elimination (MSVMRFE) by combining minimum redundancy maximum relevancy (mRMR) criterion and introducing the kernel. The result is the better performance with a smaller number of irredundant genes for multi-class datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data

MOTIVATION Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve bi...

متن کامل

Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector mac...

متن کامل

Feature selection on wide multiclass problems using OVA-RFE

Feature selection is a pre–processing technique commonly used with high–dimensional datasets. It is aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. For multiclass classification problems, recent works suggested that decomposing the multiclass problem in a set of binary ones, ...

متن کامل

List of Accepted Papers for Track ASAI 2009

Los sistemas de recomendación se utilizan para realizar recomendaciones de ítems potencialmente interesantes para un usuario en variados dominios. Existe un gran número de dominios que sugieren la necesidad de proveer técnicas de personalización para grupos de usuarios y no sólo focalizarse en usuarios individuales. En este trabajo se presentan dos aplicaciones que implementan técnicas de gener...

متن کامل

Multiclass SVM-RFE for product form feature selection

Various form features affect consumer preference regarding product design. It is, therefore, important that designers identify these critical form features to aid them in developing appealing products. However, the problems inherent in choosing product form features have not yet been intensively investigated. In this paper, an approach based on multiclass support vector machine recursive featur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010